An innovative peak detection algorithm for photoplethysmography signals: an adaptive segmentation method

نویسندگان

  • Ahmet Reşit KAVSAOĞLU
  • Kemal POLAT
  • Mehmet Recep BOZKURT
چکیده

The purpose of this paper is twofold. The first purpose is to detect M-peaks from raw photoplethysmography (PPG) signals with no preprocessing method applied to the signals. The second purpose is to estimate heart rate variability (HRV) by finding the peaks in the PPG signal. HRV is a measure of the fluctuation of the time interval between heartbeats and is calculated based on time series between strokes derived from electrocardiogram (ECG), arterial pressure (AP), or PPG signals, separately. PPG is a method widely used to measure blood volume of tissue on the basis of blood volume change in every heartbeat. In the estimation of the HRV signal from the PPG signal, HRV is calculated by measuring the time intervals between the peak values in the PPG signal. In the present paper, a novel peak detection algorithm was developed for PPG signals. Finding peak values correctly from PPG signals, the HRV signal can be estimated. This peak detection algorithm has been called an adaptive segmentation method (ASM). In this method, the PPG signals are first separated into segments with sample sizes and then the peak points in these signals are detected by comparing with maximum points in these segments. To evaluate the estimated pulse rate and HRV signals from PPG, Poincaré plots and time domain features including minimum, maximum, mean, mode, standard deviation, variance, skewness, and kurtosis values were used. Our experimental results demonstrated that ASM could be even used both in the estimation of HRV signals and to detect the peaks from raw and noisy PPG signals without a pre-processing method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Photoplethysmography Method in Extraction of Hemoglobin Concentration

Background: The importance of continuous monitoring along with rapid and accurate notification of changes in blood components such as hemoglobin concentration, especially in acute situations, encourages researchers to use non-invasive methods for measuring.Objective: This study was aimed to investigate the correlation between hemoglobin concentration and photoplethysmogram (PPG) and the p...

متن کامل

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio

It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016